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Abstract. Some properties of Dirichlet L-series, of which the Riemann zeta function is just 
the simplest example, are given. The L-series are useful in expressing two-dimensional 
lattice sums as products of simple sums. 

1. Introduction 

In a previous communication Zucker and Robertson (1975, to be referred to as I) 
evaluated exactly some two-dimensional lattice sums of the form 

S = S(a, b, c )  = S(a, b, c : s ) =  (am*+bmn + c r ~ * ) - ~ .  ( 1 . 1 )  

The term ‘exact’ is used here in the sense introduced by Glasser (1973b), meaning 
that the double sum ( 1 . 1 )  has been decomposed into products or sums of products of 
simple sums. These simple sums were Dirichlet L-series. These series were used by 
Dirichlet to prove a famous theorem in number theory. The theorem states that if k and 
1 are relatively prime integers, i.e. ( k ,  I )  = 1 ,  where (k, I )  is the greatest common 
denominator (GCD) of k and 1, then there are infinitely many primes in the arithmetic 
progression kn + 1. A proof of this theorem may be found in Dickson (1939). 

In I some properties of Dirichlet L-series relevant to summing ( 1 . 1 )  were stated. It 
was assumed there, that these properties (summarized in theorems 5-7 of this paper) 
were well known. However, although we continue to believe that these theorems are 
familiar we are unable to find any proofs of them in the literature. The object of this 
note is to supply proofs for theorems 5-7. 

(mn ZO.0) 

2. Properties of characters and definition of Lseries 

Let k be a positive integer. A number theoretic function x = X k  = X k ( n )  is called a 
character modulo k if 

x k ( l ) = l  

X k  (n) = X k  (n 

X k  ( m ) X k  (n) = X k  (mn) for all m, n 
X k ( n ) = O  if ( k ,  n ) #  1. 

k) 

( 2 . 1 )  
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A Dirichlet L-series modulo k is then defined by 

It is shown in Dickson (1939) that x can only assume values which are the +(k)th roots 
of unity. + ( k )  is the Euler function which gives the number of positive integers not 
exceeding k which are relatively prime to k .  Our interest here lies only with L-series 
having real coefficients, hence X k ( n )  = f 1 for all k and n. Certain theorems concerning 
x are required and are now given. They are all taken from Ayoub (1963). 

Theorem 1 .  If k = k l k 2 .  . . kr is a decomposition of k into pairwise co-prime integers, 
then there exists a unique decomposition 

(1) (2) (3) ( r )  
x k  = X k i X k Z X k 3  * Xk,. 

Definition 1 .  x t :  and are said to be equivalent if x t ; ( n )  = x f ' ( n )  for all n such that 
( k l ,  n )  = ( k 2 ,  n )  = 1.  k 2  is then called a defining modulus for X k , )  and k l  is a defining 
modulus for x'k2,'. 

Lemma. For k 2  to be a defining modulus for x f ;  it is necessary and sufficient for 
x f ? ( n )  = 1 whenever ( k l ,  n )  = 1 and n = l(mod kl). 

6 

Theorem 2. Every multiple of k is a defining modulus for X k .  If k l  is a defining modulus 
for x f ; ,  then so is (k1,  k z ) .  

Theorem 3. All defining moduli for X k  are multiples of a least modulus, f = f ( x ) ,  called 
the conductor. There exists a unique xf which is equivalent to x k .  

Theorem 4. f(x) = f(x"')f(x'2') . . . f(,y'"), 

Definition 2. x k  is called primitive if f ( x )  = k ,  otherwise x k  is imprimitive. 

Definition 3. xE(n) is the principal character if x; (n )  = +1 for all ( k ,  n )  = 1, and 
x i ( n )  = 0 for ( k ,  n )  # 1.  It follows that the only principal character which is also 
primitive is x l .  

From (2.2) the L-function so defined is the well known Riemann zeta function, l ( s ) .  
Thus 

L 1 ( s ) = l ( s ) =  1+2-+3-+4- .  . . . (2.3) 

Definition 4.  A primitive L-series modulo k is one in which xk(n)  is primitive. 

It is the primitive L-series which are important since non-primitive L-series may 
always be expressed as multiples of primitive L-series. A question then arises: for any 
given k how many different primitive L-series are there? The answer is contained in the 
following theorem. 

Theorem 5. Let P = 1 or pi where the pi  are all different odd primes, that is P is odd 
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and square free. Then for L-series with real characters, if: 
(a) k = P there is just one primitive L-series, e.g. k = 1 ,3 ,5  . . . ; 
( b )  k = 4P there is just one primitive L-series, e.g. k = 4 ,12 ,20 .  . . ; 
(c) k = 8P there are two primitive L-series, e.g. k = 8,24  . . . ; 
( d )  k=2P,  Ppi or 2"P where a > 3 ,  there are no primitive L-series, e.g. 

k = 2 , 6 , 9 . .  . . 
The proof of theorem 5 now follows. For every odd prime power p", there is at least 

one primitive root g. (The concept of primitive root is explained, for example, in Stark 
(1970).) Hence there are exactly two real xp- given by xp- (8) = f 1. The positive value 
gives the principal character which has conductor 1.  The negative value gives a 
character of conductor p since by the lemma [g"-": m = 1 , 2 .  . . pa- ' ]  is the set of 
pa-' residues (mod p a )  which are = l(mod p )  and xp-(gm'p-'') = 1 for all m. Thus there 
is a unique real primitive xp for every odd p but xP- is not primitive for a > 1.  This, with 
theorems 1 and 4, prove theorem 5(a) and the part of theorem 5(d) with k = Ppi. The 
only ,yz(n) is the principal character. From definition 3 this is non-primitive and thus 
theorem 5 ( d )  with k = 2P is proved. The only primitive root (mod 4) is 3, and 
x4(3) = -1 gives the only primitive x4. This proves theorem 5(b). Finally there are no 
primitive roots (mod 2") for a > 2, but the reduced residue classes (mod 2") are 
[*5'; r = 0, 1 . . . 2"-']. Hence there are exactly four real characters (mod 2") given by 
xp-(-l) = *l and xP-(5) = *l. The combination xP-(-1) = xp-(5) = 1 gives the princi- 
pal character which is not primitive. xP-(-l) = -1, xP-(5) = +1 gives the primitive x4. 
xp-(-l) = *l,  xp-(5) = -1 give the primitive characters (mod 8). There are no real 
primitive characters (mod 2") for a > 3. Theorem 5 ( c )  and theorem 5 ( d )  with k = 2"P 
are thus proved. 

Theorem 5 is best illustrated by examples of L-series. Consider k = 3. Two 
L-series satisfying the conditions laid down in (2.1) and (2.2) may be obtained. They 
are 

1+2-'+4-'+5-'. . . (2.4) 
1 -2-' +4-' - 5-" . . . . (2.5) 

(2.4) is just the series with principal character and is found to be (1  - 3-')L1. In general, 
if pi are the distinct prime factors of k the L-series modulo k with principal character is 
easily shown to be n:=, (1 -p;?LL, .  (2.5) on the other hand has primitive characters 
(mod 3) and is the only primitive L-series (mod 3). Hence it may be designated L3. 
Now consider k = 2 X 3. Apart from the series with principal character, which is not 
primitive and can be written (1 - 2-')( 1 - 3-')L1, the only other series (mod 6) which 
has characters is 

1-5-'+7-'-11-'.. . . (2.6) 
This is also non-primitive since it is (1 + 2-'))L3. Thus there are no primitive L-series 
(mod 6). Again, it may be shown that there is but one primitive series for k = 4 x 3 and 
two for k = 8 x 3. They are 

L12 = 1 -5-' -7-' + 1 I-".  . . (2.7) 

L ~ 4 ~ ~ 1 + 5 ~ s + 7 ~ ' + 1 1 ~ ' - 1 3 ~ ' ~ 1 7 ~ ' - 1 9 ~ ' - 2 3 ~ ' . .  . (2.8) 
L24b = 1 +5-'-7-'- ll-' - 13-'- 17-' + 19-' +23-'. . . . (2.9) 

All primitive L-series are algebraically independent. 
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In I we denoted the series 1 - 2-s +3-s -4-" . . = (1 -2'-')L1 by L2. This was 
incorrect since this latter series does not conform to the conditions of (2.1) and (2.2). In 
future this series will be denoted Lit. There is an Lz, namely 1 + 3-s +5-" . . . This 
series is of course not primitive, but equal to (1 - 2-')L1. 

3. Construction of primitive characters and Gseries 

Since for real characters &(n) may only be *l ,  it is found that all primitive L-series 
divide into two types according to whether Xk(k - 1) = *I. If Xk(k - 1) = -1 we shall 
refer to the L-series as a-type and denote it L - k .  If Xk(k - 1) = +1 the L-series will be 
referred to as b-type and will be denoted L+k. Thus strictly L1 = L+l, L3 = L3, 
L12 = L24a = L-24 and L246 = L+24. This stricter notation will now be maintained. 
The type exhibited by any primitive L-series depends on k in a simple fashion. 

Theorem 6. For primitive L-series with real characters if: 

L-k if P=3(mod4) 
Lk={L+k if P =  l(mod 4) 

(a) k = P  

(c) k = 8P there is a primitive function of each type. 

Theorem 6 follows from the construction of primitive Xk(n). Let (klp) be Legendre's 
symbol defined as follows: p is an odd prime and (k, p) = 1 ; (k Ip) = + 1 if the congruence 
x 2 =  k(mod p) is soluble; (kip) = -1 if the congruence x 2 =  k(mod p) is insoluble. If 
(k, p) # 1 then (k 1p) = 0. 

The Legendre symbol has been generalized by Jacobi. Let Q be l-IIfZ1 pi where the pi 
are odd primes not necessarily distinct. The Jacobi symbol (klQ) = II:=, (k(pi). 
Finally let k E O  or l(mod 4). If k l(mod 8) let (k(2) = +1 and if k =5(mod 8) let 
(k(2) = -1, the Kronecker symbol (kln) is defined as 

(kln) = 0 if (k, n) # 1 

else 
I , 

(kin) = fl (klpi) where n = n pi 
1=1 i = l  

and the pi are any primes, including 2. (kln) is thus now defined for every positive n. 
The Legendre-Jacobi-Kronecker (LJK) symbols are equal for all k and n for which they 
are defined. The LJK symbol is a character modulo k. In fact it is essentially the only 
type of real primitive character (Ayoub 1963). We have 

and this enables us to construct L-series modulo k which include the primitive series. 
The properties of the LJK symbol yield the results stated in theorem 6. 
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4. Evaluation of L,&) for special values of s 

The functional equation for primitive L-functions may be found in Landau (1909). In 
our notation they become 

L-&(S)= c(s) cos(sr /2)L-k( l - s )  (4.1) 

L+&(s) = C(s)  sin(sr/2)L+k( 1 - s )  (4.2) 

where C(s)  = 2srs-1k-s+'r ( l  -s ) .  When k = 1 (4.2) becomes the well known func- 
tional equation for the Riemann zeta function. All the series for L+&) converge for 
R ( s )  >O, except L+l which converges for R ( s )  > 1 .  The functional equations allow us 
to calculate L*& for all real s. They are all entire single-valued functions of s except L+l 
which has a simple pole at s = 1 .  It is well known that L+1(-2m) = 0 and L+1(2m) = 
R r 2 m  where m is a positive integer and R a rational number. Similarly it may be shown 
(Glasser 1973a) that L - J l - 2 m )  = 0 and L-4(2m - 1 )  = R'rZm- l  with R' rational. 
These are special cases of the following result. 

Theorem 7. For m a positive integer 
-4 2m-1 ( a )  L - & ( l -  2m) = 0, L + ( 2 m - 1 ) = R f k  T , 

I,-&( - 2m) = ( -  1)mR'(2m)!/(2k)2m ; 

( 6 )  L + k ( - 2 m ) = o ,  L+&(2m) = Rk-f..rr2m, 

L + k (  1 - 2m) = (-  1)"R(2m - 1)!/(2k)'"-', 

where R and R' are rational numbers depending on m and k. The proof of this theorem 
now follows. 

r( 1 - s )  has simple poles whenever s is a positive integer. It follows immediately from 
the functional equations that 

L - & ( l - 2 m ) =  L+&(-2m)=O. 

For R ( s )  > 0, 
m m 

L*&(s) = 1 xk(n)n-', r(s) = tS-' e-' dt. 
n = l  0 

For R ( s ) >  1 ,  Fubini's theorem gives 

L+&(s)r (s )  = 1 xk(n)n-' lo tS-' e-' d t  
m m 

n = l  

Both sides of (4.3) are regular functions of s for R ( s )  > 0 and so the equation holds for 
R ( s )  > 0. 

Let C be any contour in the complex s-plane, which starts at +a on the real axis, 
encircles the origin once in a counter-clockwise direction and returns to +a without 
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0 . r 
I 

I C 

F w  1. 

enclosing any of the points 2ni/k (n = *l ,  *2. . .). Take larg(-w)l< a on C, so that 
(-U)'-' =exp[(s- 1) In(-U)] is made definite by taking In(-o) real at o = -6. If 
o = U eie is on the contour then In(-o) = In U + i(O - T) with 0 = 0 originally at +a on 
the real axis, and 6 = 2~ finally at +oO on the real axis. Let C be deformed into the path 
of integration which starts from +a, proceeds along the real axis to S, describes a circle 
of radius Scounter-clockwise round the origin and returns to +a along the real axis (see 
figure 1). Then for R(s)  > 1: 

+ -2i sin(m)L,k(s)r(s) as S + 0 from above. 

As T(s)T(l- s) = a cosec(as) for all non-integral s then 
(4.4) 

for all non-integral s for which R(s)  > 1. However, the contour integral is an integral 
function, r( 1 - s) is regular in the s-plane except for simple poles when s is a positive 
integer, and Lr+.k(s) is regular for R ( s )  > 0. Hence as the right-hand side of (4.5) is an 
integral function, the left-hand side, namely L,k(s), is continued analytically into the 
whole s-plane by this equation. 

For any positive integer m, the residue theorem gives 
(k-n)w 1 z:=1 Xk(n) e L,k(-m)/(-l)"m! = residue at 0 of m+l 

0 e h - l  

1 k o  
= residue at 0 of '-2 1 x k  (n) ko"+ n = l  

k 

n = l  
= k-' 1 Xk(n)k"+'B,+l(l - n/k)/(m + l)! 

where the Bernoulli polynomials B, ( x ) / n  ! are defined by 

(4.6) 

(4.7) 
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Hence 

Now the following is true for all r 3 0: 

Consider the a-type L-series. We have 

r(2m --SI sin ((s -2; + 1’3 
r( i -S)coS(y)  = (1 - s)(2- s) . . . (2m - 1 - s) (-om 

as s + 2m - 1. (- 1) - 7r/ 2 
(2m -2)! 

+ 

(4.9) 

(4.10) 

So from the functional equation 

Since both k and n are positive integers B2,-l(l -n/k) is a rational number, and the 
result L-k(2m - 1) = R‘k with R’ rational is proved. Similarly by considering 
r( 1 - s) sin(s7r/2) the result 

-112 2171-1 
7r 

k 
(4.12) 

is obtained and hence L+,(2m) = Rk-1’27r2m with R rational is proved. The remainder 
of theorem 7 follows immediately from the functional relations (4.1) and (4.2). 

Nothing general appears to be known about LWk(2m) and L+k(2m-1). For 
example it is not known how to express L+,(3) = 5(3) or L-,(2) = p(2) in terms of known 
transcendentals. Attempts have been made (Grosswald 1972, Smart 1973) to express 
7r L+1(2m - 1) as a rational number, but so far unsuccessfully. Up to now each 
L-k(2m) and L+k(2m - 1) has been considered a new constant, with L-,(2) having the 
status of being named Catalan’s constant. However, it is possible to express all L * k ( l )  
in terms of known transcendentals. It has just been shown (4.1 1) that 

L-k(l) = R’k-lf27r. (4.13) 

This is just one part of a remarkable result of Dirichlet’s concerning the class number 
h(d) of the binary quadratic form am2+ bmn + cn2 with discriminant d = b2 - 4ac. The 
concept of class number related to binary quadratic forms is discussed, for example, in 
Dickson (1939). Dirichlet showed that if 

m-1 2171-1 2 m  -1f2 L+k(am)=(-l) 2 7T k 1 Xk(n)B2m(l-n/k)/(2m)! 
n = l  

-2m+l 

d<O Ld(l)  = h(d)7r/dlf2 

d>O L+d(l) = 2h(d) In eo/dlf2. 

(4.14) 

(4.15) 

For the special cases d = -3 and d = -4 the right-hand side of (4.13) has to be divided 
by 3 and 2 respectively. (4.13) is of course the same as (4.12), and tells us that R’ for 
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s = 1 is a whole number since h ( d )  is a whole number. In (4.14) eo is the fundamental 
unit in the quadratic number-field Q(Jd). An account of this may be found in Stark 
(1970). eo is easily found for any given real quadratic field and thus L+k( l )  may be 
expressed in known transcendentals. For example 

L (1)=1-2-'-3-'+4-'+6-'-7-'-8-'+9-'. . 1 . = ~ s l n ( y )  3+J5 +5 

L+13(1)= 1-2-'+3-'+4-'-5-'-6-'-7-'-8-'+9-'+10-'-11-'+12-'. , . 
- - . . 

J13 

In view of (4.15) it seems tempting to us to suggest that In eo may play some role in 
possible closed forms for L-k(2m) and L+k(2m - 1). 

5. Condusion 

Some little known properties of Dirichlet L-series have been stated and proved. It was 
found previously (I) that certain two-dimensional lattice sums such as S could be 
decomposed into linear sums of products of such L-series. This was accomplished in I 
on an ad hoc basis for each S(a, b, c). In the following paper a criterion is suggested for 
when S(a, b, c) can be decomposed, and a systematic approach to the evaluation of S 
will be described when the decomposition can be effected. 
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